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Abstract 

 A quantitative correlation between major seedling condition parameters in winter wheat at the jointing 
stage and the grain quality parameters, production, and remote sensing variables was conducted. It is possible 
to predict leaf area index, SPAD value and leaf nitrogen content in winter wheat at the jointing stage by 
normalized difference vegetation index (NDVI), and to predict biomass using near-infrared band reflectance 
(B4), respectively. The remote sensing models of the leaf area index, SPAD value, leaf nitrogen content and 
biomass of winter wheat were credible, and higher precision with determination coefficient (R2) of 0.709, 0.701, 
0.671 and 0.612, respectively, and with root mean square error (RMSE) of 0.641, 3.499, 0.347% and 486.3 
kg/hm2, respectively. Spatial distribution map of the major seedling condition parameters of winter wheat 
could be implemented at different classes with remote sensing method. 
 
Introduction 
 The growth and production of winter wheat are closely related to the quality of the grain, and 
major parameters including the LAI, biomass, SPAD value, and LNC. One of the tasks of remote 
sensing is to monitor agriculture and the growth of plants and level of growth at different stages. 
 Over the past years, the different remote sensing data and methods have been used to monitor 
crop growth; consequently plenty of valuable information was obtained (Kyu-Sung et al. 2004, Tan 
et al. 2005, Gnyp et al. 2014, Bsaibes et al. 2009). Date back to the early 1980s, the vegetation 
indices curve extracted from LANDSAT MSS and NOAA had been used to assess the growth of 
crops (Crist and Malila 1980, Schneider et al. 1981, Moriondo et al. 2007). The vegetation indices 
had been used to assess the growth of crops in order to survey the impacts of disaster (Tappan et al. 
1990). Hunt et al. (2013) found that the triangular greenness index (TGI) was related to leaf 
chlorophyll content. Timely detection of growth parameters of crop with remote sensing technology 
on a regional scale is important to ascertain canopy energy exchange in agro-ecosystems (Li et al. 
2014, Delegido et al. 2013). Focuses are now concentrated on the possibility of retrieving rice plant 
parameter such as plant age, height, biomass etc. (Ozdogan and Gutman 2008). Airborne 
hyperspectral remote sensing was applied to analyze the nitrogen content in rice at panicle initiation 
stage by using data of three years (Chanseok et al. 2010).  
 It is important to note that China had launched the A and B satellites (called HJ-1A/1B) of 
“Environment and Disaster Monitoring and Forecasting Small Satellite Constellation System” with 
independent intellectual property rights on September 6, 2008. These satellites have CCD sensors 
with broad band, 30 m spatial resolution, and 2-day-time resolution by parallel observation. This 
provides an ideal data source for the industrialization of agricultural remote sensing monitoring. 
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 There exists a system of remote sensing monitoring of the growth of crops, however, the system 
need to be improved. The generality of farm management service is poor and studies on the 
mechanisms are insufficient (Tan et al. 2011). For winter wheat especially, research on the major 
growth parameters at the jointing stage is unclear, plus the precision and accuracy of remote sensing 
monitoring do not satisfy the production. More studies are necessary to improve the quality and 
reliability of remote sensing. 
 This study made use of the remote sensing data of the HJ-1A/1B satellites to monitor the LAI, 
biomass, SPAD value, and LNC of winter wheat at the jointing stage, assess the growth, display the 
spatial distribution of the growth parameters, select the sensitive variables of remote sensing for the 
monitoring of the major growth parameters, build and verify the models based on the sensitive 
variables of the major growth parameters. The obtained data could offer global information for the 
assessment of fertilization and irrigation and improve the quality and production in winter wheat 
crops. 
 
Materials and Methods 
 Experiment 1: There were a total of 60 samples, made up of 10 - 20 samples acquired from 
XingHua, DaFeng, TaiXing and JiangYan counties in Jiangsu Province, China in 2012. The 
geographic location of each sample was obtained by Juno ST portable GPS (Trimble, USA). The 
investigation indicators included winter wheat varieties, growth stages, group growth, and disasters 
(primarily pests). The winter wheat varieties included Yangmai No. 13, Yangmai No. 15, Yangmai 
No. 16, Yangfumai No. 2, and Ningmai No. 9. The sampling periods included the jointing and 
ripening stages. The exact sampling periods depended on the satellite passing time and the 
experimental areas. Typically, for each experimental field, plants with similar growing trends were 
selected in areas of four rows by 50 cm, the length measured with rulers, and the location recorded 
by GPS at the time. After sampling, LAI (lamina mass per unit area method), biomass (weighing 
method), SPAD value (SPAD-502 detecting), LNC (Kjeldahl method), and the parameters of the 
quality of the winter wheat at the ripening stage (acquired by near infrared instrument for crop 
quality detection), including the content of protein were tested in a laboratory. The satellite data 
were derived from the passing images of the HJ-1A/1B satellites on March 23 at the jointing stage. 
The data were used as the testing samples of the assessment models. 
 Experiment 2: There was a total of 60 samples, made up of 10 - 20 samples from GaoYou, Xing 
Hua, Tai Xing and Jiang Yan counties in Jiangsu Province in 2013. The other conditions were the 
same as Experiment 1. The data were derived from the satellite passing images of the HJ-1A/1B 
satellites on March 27 at the jointing stage. The data were used as the testing samples of the 
assessment models. 
 Experiment 3: There was a total of 120 samples, 30 samples acquired from Xing Hua, Da Feng, 
JiangYan, Tai Xing, and Yi Zheng counties in Jiangsu Province in 2014, with the other conditions 
similar to Experiment 1. The data were derived from the satellite passing images of the HJ-1A/1B 
satellites on March 25 at the jointing stage. The data were used as the training samples of the 
building models. 
 Study areas located in the center of Jiangsu Province (119°12′to 120°26′East longitude & 32°2′
to 33°16′North latitude), is one of the main winter wheat production areas in Jiangsu. The areas have 
subtropical moist monsoon climate, dish-shaped plain depression, about 1000 mm annual average 
precipitation, and about 2200 hrs annual average sunshine.  In the experimental area, wheat seeds 
were sown in November of the first year and harvested in June of second year. In this research, the 
samples were harvested at jointing stage in the month of March, which is the key period of wheat 
plant growth process.  
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 The data used in this study were derived from images provided by the HJ-1A/1B satellites from 
China center of resources satellite data and application. The images had high spatial resolution and 
spectral resolution including blue, green, red, and near infrared spectral bands. 
 The preprocessing of the images was conducted with ENVI. Firstly, geometric corrections of 
the images were conducted based on the topographic maps (scale 1 : 100 000) of Jiangsu province, 
China. Then, further geometric corrections were conducted based on the GPS control points on the 
ground. The atmospheric radiometric corrections and the conversions of reflectivity were conducted 
by the empirical linear method (Tan et al. 2011). 
 The variables of the satellite remote sensing were calculated using Excel, based on the 
brightness values of the GPS sampling points extracted by ENVI5.1, ArcGIS10.2, and the existing 
satellite remote sensing spectral indices algorithms. Based on the data from Experiment 3, the 
correlations between the major growth parameters of winter wheat at the jointing stage and the 
variables of the satellite remote sensing were analyzed, and a remote sensing monitoring model was 
built by regression and optimization through goodness of fit (R2). The model was assessed based on 
the data of Experiments 1 and 2, R2, and root mean square error (RMSE) (Tan et al. 2011). A list of 
common multi-spectral satellite remote sensing vegetation indices is presented in Table 1. 
 
Table 1. Some common multi-spectral satellite remote sensing vegetation indices. 
 

Vegetation index Calculation formulas Sources 
Difference vegetation index (DVI) = B4–B3 Jordan (1969) 
Ratio vegetation index (RVI) = B4/B3 Jacobsen (1998) 
Normalized difference vegetation index 
(NDVI) = (B4–B3)/(B4 + B3) Serrano et al. (2000) 

Green normalized difference vegetation 
index (GNDVI) = (B4–B2)/(B4 + B2) Daughtry et al. (2000) 

Plant senescence reflectance index 
(PSRI) = (B3-B1)/B4 Sims and Gamon (2002) 

Structure intensive pigment index (SIPI) = (B4–B1)/(B4+B1) Penuelas et al. (1995) 
Nitrogen reflectance index (NRI) = (B2–B3)/(B2+B3) Schleicher et al. (1981) 
Soil adjusted vegetation index (SAVI) = (B4–B3)/(B4+B3+0.5)*(1+0.5) Huete and Jackson (1988) 
Optimal soil adjusted vegetation index 
(OSAVI) = (1+0.16)* (B4-B3)/(B4+B3+0.16) Rondeaux et al. (1996) 
 

B1, B2, B3 and B4 denoted spectrum reflectance of HJ-1A/1B images at blue, green, red and near infrared bands, 
respectively. 
 

Results and Discussion 
 Table 2 shows the correlations between major growth parameters of winter wheat and the 
quality and production. The results from Experiment 3 showed that, at the jointing stage, the LNC 
was significantly correlated with the SPAD value and the starch content, while the SPAD value was 
significantly correlated with the protein, wet gluten, and starch content. The biomass was found to 
significantly correlate with the LAI and the starch, protein and wet gluten content. 
 Table 3 shows the correlation between major growth parameters and the variables of remote 
sensing. It showed that at the jointing stage, the SPAD value had a significant correlation with B3, B4, 
NDVI, NRI, GNDVI, SIPI, PSRI, DVI, RVI, SAVI and OSAVI. The correlation with NDVI was 
significant, with a correlation coefficient of 0.837. According to the rule of sensitive parameter 
determination (Valérie et al. 2008), NDVI is the best variable used to invert the SPAD value and 
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could provide information for the decision of winter wheat cultivation. It was also found that 
biomass was significantly correlated with B4, NDVI, NRI, SIPI, PSRI, DVI, RVI, SAVI, and 
OSAVI. The correlation with B4 was the strongest (r = 0.782, p < 0.01), which means B4 is the best 
variable used to invert the biomass. The LAI was significantly correlated with B2, B3, NDVI and 
NRI; the correlation with NDVI was the strongest (r = 0.842, p < 0.01), which means NDVI is the 
optimal variable used to invert the LAI. The LNC was significantly correlated with B3, B4, NDVI, 
GNDVI, SIPI, PSRI, DVI, RVI, SAVI, and OSAVI. The correlation with NDVI was the strongest (r 
= 0.819, p < 0.01) which means NDVI is the best variable used to invert the LNC. In summary, it is 
possible to invert the SPAD value, biomass, LAI, and LNC with the remote sensing variables of 
NDVI, B4, NDVI, and NDVI. 
 

Table 2. Correlation between growth parameters, grain quality and yield (n = 120). 
 

 LAI LNC   
(%) 

SPAD Biomass 
(kg/hm2) 

Yield 
(kg/hm2) 

GPC      
(%) 

WGC  
(%) 

GSC 
(%) 

LAI 1.000        
LNC (%) 0.085 1.000       
SPAD 0.014 0.566** 1.000      
Biomass 
(kg/hm2) 

0.652** 0.173 0.148 1.000     

Yield 
(kg/hm2) 

–0.119 –0.133 0.078 -0.17 1.000    

GPC (%) –0.002 –0.172 –0.247* -0.303* –0.173 1.000   
WGC (%) 0.016 –0.117 –0.253* -0.254* –0.120 0.919** 1.000  
GSC (%) 0.030 0.240* 0.271* 0.385** 0.270* –0.563** –0.556** 1.000 
 

*Significant at p < 0.05, **Significant at p < 0.01, n: Total samples number. 
 

Table 3. Correlation coefficients between key growth indices and multi-spectral remote sensing 
variables (n = 120). 

 

 LAI LNC (%) SPAD Biomass (kg/hm2)
B1 0.091 –0.080 0.054 –0.070 
B2 0.431** –0.008 0.082 –0.070 
B3 0.704** –0.294* –0.433** –0.209 
B4 0.215 0.613** 0.618** 0.782** 
NDVI 0.842** 0.819** 0.837** 0.437** 
NRI 0.258* 0.135 0.327* 0.553** 
GNDVI –0.020 0.537** 0.508** 0.140 
SIPI 0.162 0.621** 0.564** 0.315* 
PSRI –0.087 –0.495** –0.687** 0.392** 
DVI 0.180 0.656** 0.687** 0.382** 
RVI 0.159 0.651** 0.696** –0.275* 
SAVI 0.140 0.676** 0.720** 0.437** 
OSAVI 0.140 0.676** 0.720** 0.437** 
 

*Significant at p < 0.05, **Significant at p < 0.01, n: Total samples number. 
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 Based on the aforementioned results, the remote sensing variables of the major growth 
parameters were selected based on their correlations. The remote sensing monitoring models of the 
major growth parameters were built through linear regression using the sensitive remote sensing 
variables as the dependent variables and the growth parameters as the independent variables. The 
final remote sensing monitoring model of the major growth parameters at the jointing stage was 
identified by the determining coefficient with highest R2 (Fig. 1). 

 

 
Fig.1. Remote sensing models for monitoring growth status parameters of winter wheat. 

 
 The reliability of the models was assessed by the relationship model (Fig. 1) and regression 
analysis of the predicted values and observed values (Fig. 2), R2, and RMSE value based on the data 
of 2012 and 2013 (Table 4). The results showed that the correlation between the predicted values 
and observed values were significant, and the R2 and RMSE were ideal. This indicated that the 
models are capable of monitoring the major growth parameters with higher accuracy (Fig. 2), 
especially for using the NDVI to monitor the SPAD with the highest R2 and RMSE, which were 0.85 
and 2.67, respectively. Additionally, according to the results shown in Table 2, it is possible to use 
these models to indirectly calculate other agronomic parameters related to these major growth 
parameters. 
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Fig. 2. Evaluating the remote sensing models for monitoring growth status parameters of winter wheat. 

 
Table 4. Results of evaluating the remote sensing monitoring models. 
 

Growth 
stage 

Independent 
variables (x) 

Dependent variables 
(y) Models R2 RMSE 

NDVI LAI y = 7.7905x + 0.6481 0.742** 0.641 

NDVI LNC (%) y = 4.1174x + 0.7689 0.719** 0.347 

NDVI SPAD y = 34.131x + 35.468 0.726** 3.499 
Jointing 
stage 

B4 Biomass (kg/hm2) y = 1.6149x – 2400.9 0.649** 486.3 
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Fig. 3. Thematic maps for monitoring growth parameters (SPAD & BM) of winter wheat. 
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Fig. 4. Thematic maps for monitoring growth parameters (LAI & LNC) of winter wheat. 
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 Thematic maps were made on the basis of SPAD value, biomass, LAI, and LNC of winter 
wheat using the remote sensing variables (Figs 3-4). Non-planted areas were removed by binary 
mask overlay with wheat planting distribution data and vector data of administrative boundary (Fig. 
3). LAI values are shown as 3 - 4 or higher than 4 and most of the LNC (%) values are 3.0 - 3.5, 2.5 
- 3.0 in the northern area of JianHu and higher than 3.5 in the Jin Hu, BaoYing, Da Feng and Dong 
Tai areas (Fig. 4). Most of the SPAD values are higher than 50, with values higher than 55 in the Bao 
Ying and Dong Tai areas, 45-50 in the northern area of Jian Hu, and lower than 45 in some areas of 
Huai An (Fig. 3). Fig. 2 also shows that the biomass (kg/hm2) is higher than 4000 in the Bao Ying, 
Da Feng and Dong Tai areas, 2000 - 3000 and 3000 - 4000 in the most areas covered by images, and 
lower than 2000 in some areas of Jian Hu. These results were consistent with field investigations 
and information provided by local agricultural departments as well. 
 The main findings were: (1) It is possible to invert the LAI, LNC, SPAD value, and biomass in 
wheat growth by remote sensing variables. (2) Remote sensing monitoring models were built for 
LAI, LNC, SPAD, and biomass. Moreover, the model accuracy was also verified. (3) The spatial 
distribution of the growth parameters could be implemented by remote sensing monitoring thematic 
maps of the LAI, LNC, SPAD value, and biomass of winter wheat at the jointing stage at different 
levels. 
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